Acta Cryst. (1996). C52, 2489-2491

Bis(tert-butylthiolato-S)germanium-Imide Trimer

Clifford George ${ }^{a}$ and Andrew P. Purdy ${ }^{b}$
${ }^{a}$ Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5341, USA, and
${ }^{b}$ Chemistry Division, Naval Research laboratory, Washington, DC 20375-5342, USA. E-mail: george@pauling.nrl.navy.mil

(Received 16 May 1996; accepted II June 1990)

Abstract

The cyclic germanium (IV) imide thiolate, cyclo-tri-μ-imido-tris[bis(tert-butylthiolato-S)germanium], [Ge ${ }_{3}-$ $\left.\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CS}\right\}_{6}(\mathrm{NH})_{3}\right]$, was synthesized and its absolute structure determined. The six-membered ring formed by the trimer has a greater non-planarity than the only other reported $\mathrm{Ge}^{\mathrm{IV}}$-imide trimer. The $\mathrm{Ge}-\mathrm{N}$ ring distances range from $1.755(13)$ to $1.829(12) \AA$ and average 1.807 A . The $\mathrm{Ge}-\mathrm{S}$ distances range from 2.171 (4) to 2.272 (5) \AA and average $2.218 \AA$.

Comment

The structure determination of the title compound, (I), was undertaken in order to positively identify the compound and determine the degree of oligimerization.

(I)

The $\mathrm{Ge}_{3} \mathrm{~N}_{3}$ ring is puckered, with the N atoms deviating from the plane formed by the three Ge atoms by 0.11 (2), 0.14 (2) and $-0.50(1) \AA$ for atoms N1, N 2 and N 3 , respectively (Fig. 1). This non-planarity is greater than is seen in $\left(\mathrm{Cl}_{2} \mathrm{GeNCH}_{3}\right)_{3}$, which has N atom deviations in the range -0.01 to $0.23 \AA$ (Ziegler \& Weiss, 1971). Steric effects of the bulky tert-butylthiolate groups may account for the greater puckering. The puckered ring forms a fold along the line connecting the Ge2 and N3 atoms producing two four-membered least-squares planes [maximum deviation from the mean plane of $0.03(2) \AA$], with a dihedral angle between the planes of $25.3(5)^{\circ}$. The $\mathrm{N}-\mathrm{Ge}-\mathrm{N}$ angles are slightly smaller and the $\mathrm{Ge}-\mathrm{N}-\mathrm{Ge}$ angles slightly larger than in $\left(\mathrm{Cl}_{2} \mathrm{GeNCH}_{3}\right)_{3}$, which has comparable $\mathrm{Ge}-\mathrm{N}$ distances of 1.78 (2)-1.86 (2) \AA.

Fig. 1. Displacement-ellipsoid plot of the title compound drawn at the 20% probability level. H atoms have been omitted for clarity. The lower occupancy disordered tert-butylthiolate groups are shown with dashed bonds.
 (Bartlett \& Power, 1990) forms a planar ring and has distances and angles similar to those of the title compound. All Ge-S distances here are similar to the distances of 2.261 (3) and 2.255 (4) A (Veith, Detemple \& Huch, 1990), and of 2.199 (2) and 2.195 (2) A (Pfeiffer, Noltemeyer \& Meller, 1989) found in other $\mathrm{Ge}^{\mathrm{IV}}$ thiolates. The $\mathrm{S}-\mathrm{Ge}-\mathrm{S}$ angles are comparable to those in $\left[\mathrm{Ge}\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\right]_{4}$ (Kersting \& Krebs, 1994). The complex is chiral due to the S-C arms which form a handed screw. Both thiolate groups attached to the Ge3 atom are disordered. The tert-butylthiolate groups are displaced by $c a .53^{\circ}$ from the higher occupancy positions, but the central C atoms of the respective tert-butyl groups remain essentially fixed.

Experimental

In a reaction aimed at synthesizing $\left(\mathrm{Me}_{3} \mathrm{CS}\right)_{3} \mathrm{GeNH}_{2}$ (Mehrotra, Gupta \& Sukhani, 1967), $\mathrm{GeCl}_{4}(2.97 \mathrm{~g}, 14.0 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{CSH}(3.92 \mathrm{~g}, 43.5 \mathrm{mmol})$ were condensed into 50 ml of anhydrous benzene in a 100 ml H -tube under vacuum. The mixture was warmed slowly to dissolve the contents and then 90 mmol of anhydrous NH_{3} was condensed in at 77 K . This mixture was warmed slowly to room temperature and stirred for one day. Following filtration and evaporation to dryness, the waxy solid obtained was recrystallized twice under an inert atmosphere from hot dry heptane to afford 0.269 g of $\left[\mathrm{Ge}(\mathrm{NH})\left(\mathrm{SCMe}_{3}\right)_{2}\right]_{3}$ as a minor product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $1.598\left(\mathrm{CH}_{3}\right), 1.51(\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 35.5\left(\mathrm{CH}_{3}\right), 48.1$ (C); IR $\left(\mathrm{cm}^{-1}\right): 3397,3383[\mathrm{~N}-\mathrm{H}(\mathrm{s})]$. The data crystal was mounted in a sealed glass capilliary under an inert atmosphere and the data were collected at 223 K . The low-temperature apparatus restricts the data collection to θ of less than 60°.

Crystal data

$\left[\mathrm{Ge}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}\right)_{6}(\mathrm{NH})_{3}\right]$
$M_{r}=797.86$
Monoclinic
$P 2_{1}$
$a=12.013$ (2) \AA
$b=10.610(2) \AA$
$c=15.634$
(3) \AA
$\beta=103.08$ (3)
$V=1940.9(7) \AA^{3}$
$Z=2$
$D_{x}=1.365 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P4 diffractometer $\theta / 2 \theta$ scans
Absorption correction:
semi-empirical via
ψ scans (XPREP in
SHELXTL; Sheldrick, 1994)
$T_{\text {min }}=0.036, T_{\text {max }}=0.162$
3160 measured reflections
2904 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.0512$
$w R\left(F^{2}\right)=0.1320$
$S=1.038$
2904 reflections
354 parameters
H atoms riding

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0772 P)^{2} \\
&+5.4341 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.149 \\
& \Delta \rho_{\max }=1.118 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.128 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Gel	0.23377 (13)	0.53455 (18)	0.30130 (10)	0.0240 (5)
Ge 2	0.25244 (13)	0.57672 (19)	0.09496 (10)	0.0281 (5)
Ge 3	0.47707 (14)	0.6085 (2)	0.25573 (11)	0.0364 (6)
S1	0.1671 (4)	0.3685 (4)	0.3581 (3)	0.0342 (10)
S2	0.2020 (4)	0.6962 (4)	0.3832 (3)	0.0381 (11)
S3	0.2360 (4)	0.3897 (5)	0.0302 (3)	0.0440 (12)
S4	0.1639 (4)	0.7117 (5)	-0.0054 (3)	0.0395 (11)
N1	0.1800 (10)	0.5521 (15)	0.1841 (8)	0.037 (4)
N2	0.3976 (11)	0.6198 (19)	0.1470 (9)	0.050 (5)
N3	0.3892 (10)	0.5247 (14)	0.3176 (7)	0.026 (3)
Cl	0.1736 (15)	0.2270 (17)	0.2879 (11)	0.036 (4)
C1A	0.160 (2)	0.120 (2)	0.3460 (14)	0.065 (6)
C1B	0.076 (2)	0.238 (2)	0.204 (1)	0.058 (6)
C1C	0.287 (2)	0.220 (2)	0.261 (1)	0.051 (5)
C2	0.048 (1)	0.699 (2)	0.387 (1)	0.042 (5)
C2A	0.027 (2)	0.831 (2)	0.409 (2)	0.087 (10)
C2B	-0.025 (2)	0.662 (2)	0.298 (1)	0.062 (6)

C 2 C	0.025 (2)	0.609 (2)	0.458 (1)	0.065 (6)
C3	0.295 (2)	0.397 (2)	-0.069 (1)	0.053 (6)
C3A	0.324 (3)	0.260 (3)	-0.084 (2)	0.129 (15)
C3B	0.203 (2)	0.437 (3)	-0.147 (1)	0.080 (9)
C3C	0.397 (2)	0.484 (3)	-0.059 (1)	0.080 (9)
C4	0.181 (1)	0.872 (2)	0.041 (1)	0.039 (4)
C4A	0.301 (2)	0.917 (2)	0.051 (2)	0.069 (7)
C4B	0.099 (2)	0.951 (2)	-0.023 (1)	0.059 (6)
C4C	0.146 (2)	0.874 (2)	0.130 (1)	0.068 (7)
S5 \dagger	0.4816 (5)	0.8191 (5)	0.2828 (4)	0.0367 (16)
$\mathrm{C} 5 \dagger$	0.569 (2)	0.850 (2)	0.394 (1)	0.035 (6)
C5A \dagger	0.520 (2)	0.978 (3)	0.422 (2)	0.056 (7)
C5B \dagger	0.694 (2)	0.869 (3)	0.393 (2)	0.050 (8)
C5C \dagger	0.553 (2)	0.750 (3)	0.459 (1)	0.043 (7)
S5' \ddagger	0.6292 (9)	0.7140 (14)	0.3211 (9)	0.031 (5)
C5' \ddagger	0.561 (6)	0.836 (6)	0.377 (5)	0.080
C5'C \ddagger	0.522 (10)	0.795 (12)	0.458 (6)	0.080
C5'B \ddagger	0.657 (7)	0.930 (11)	0.398 (7)	0.080
C5'A \ddagger	0.463 (7)	0.880 (12)	0.306 (6)	0.080
S6 \dagger	0.6548 (4)	0.5503 (5)	0.2823 (4)	0.041 (2)
C6 \dagger	0.659 (1)	0.375 (1)	0.278 (1)	0.051 (7)
C6A \dagger	0.636 (2)	0.326 (2)	0.364 (2)	0.066 (10)
C6B \dagger	0.780 (2)	0.341 (2)	0.274 (2)	0.073 (10)
$\mathrm{C} 6 \mathrm{C} \dagger$	0.558 (1)	0.351 (1)	0.202 (1)	0.13 (3)
S6' \ddagger	0.554 (1)	0.442 (1)	0.201 (1)	0.103 (15)
C6' \ddagger	0.649 (1)	0.384 (1)	0.281 (1)	0.080
$\mathrm{C}^{\prime} \mathrm{C} \ddagger$	0.757 (1)	0.467 (1)	0.297 (1)	0.080
$\mathrm{Cb}^{\prime} B \ddagger$	0.603 (1)	0.386 (1)	0.365 (1)	0.080
C6 ${ }^{\prime}$ A \ddagger	0.682 (1)	0.239 (1)	0.260 (1)	0.080

\dagger Site occupancy of 0.746 (10). \ddagger Site occupancy of 0.254 (10).

Table 2. Selected geometric parameters $\left({ }_{A},^{\circ}\right)$

Gel-N1	1.809 (12)	Ge2-S3	2.216 (5)
Gel-N3	1.829 (12)	$\mathrm{Ge} 3-\mathrm{N} 2$	1.755 (13)
$\mathrm{Ge} 1-\mathrm{Sl}$	2.203 (4)	Ge3-N3	1.818 (12)
Ge1-S2	2.224 (4)	Ge3-S6	2.171 (4)
$\mathrm{Ge} 2-\mathrm{N} 2$	1.808 (14)	Ge3-S5 ${ }^{\prime}$	2.188 (7)
$\mathrm{Ge} 2-\mathrm{Nl}$	1.821 (11)	Ge3-S6'	2.258 (7)
Ge2-S4	2.212 (5)	Ge3-S5	2.272 (5)
$\mathrm{N} 1-\mathrm{Ge} 1-\mathrm{N} 3$	105.4 (5)	N2-Ge3-S6	120.0 (5)
$\mathrm{N} 1-\mathrm{Ge} 1-\mathrm{S} 1$	114.3 (5)	N3-Ge3-S6	115.1 (4)
N3-Gel-S1	110.5 (4)	$\mathrm{N} 2-\mathrm{Ge} 3-\mathrm{S5}^{\prime}$	129.1 (7)
$\mathrm{N} 1-\mathrm{Ge} 1-\mathrm{S} 2$	115.8 (5)	N3-Ge3-S5 ${ }^{\prime}$	121.7 (5)
$\mathrm{N} 3-\mathrm{Ge} 1-\mathrm{S} 2$	105.4 (4)	$\mathrm{N} 2-\mathrm{Ge} 3-\mathrm{S6}^{\prime}$	82.3 (7)
$\mathrm{S} 1-\mathrm{Ge} 1-\mathrm{S} 2$	105.0 (2)	N3-Ge3-S6 ${ }^{\prime}$	99.1 (6)
$\mathrm{N} 2-\mathrm{Ge} 2-\mathrm{N} 1$	105.7 (6)	S5 ${ }^{\prime}-\mathrm{Ge} 3-\mathrm{S6}^{\prime}$	101.9 (5)
$\mathrm{N} 2-\mathrm{Ge} 2-\mathrm{S} 4$	114.6 (6)	$\mathrm{N} 2-\mathrm{Ge} 3-\mathrm{S} 5$	95.6 (7)
$\mathrm{N} 1-\mathrm{Ge} 2-\mathrm{S} 4$	113.6 (5)	N3-Ge3-S5	112.0 (5)
N2-Ge2-S3	114.2 (6)	S6-Ge3-S5	105.2 (2)
$\mathrm{N} 1-\mathrm{Ge} 2-\mathrm{S} 3$	102.3 (5)	$\mathrm{Ge} 1-\mathrm{N} 1-\mathrm{Ge} 2$	131.9 (7)
S4-Ge2-S3	106.1 (2)	$\mathrm{Ge} 3-\mathrm{N} 2-\mathrm{Ge} 2$	132.6 (8)
N2-Ge3-N3	107.1 (6)	$\mathrm{Ge} 3-\mathrm{N} 3-\mathrm{Gel}$	126.5 (7)

The two tert-butylthiolate groups bonded to the Ge 3 atom are disordered and display alternate positions for the S and C atoms. The occupancy ratio is $3: 1$. Both the S and C atoms were refined with bond-distance restraints and the C atoms were refined with next nearest neighbor distance restraints. The displacement parameters for the lower occupancy C atoms were isotropic and fixed. Large difference peaks remain within the disordered tert-butyl groups indicating an additional level of disorder, however, it was not possible to model it discretely.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

This research was supported in part by the Office of Naval Research (ONR).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1205). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bartlett, R. A. \& Power, P. P. (1990). J. Am. Chem. Soc. 112, 36603662.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kersting, B. \& Krebs, B. (1994). Inorg. Chem. 33, 3886-3892.
Mehrotra, R. C., Gupta, V. D. \& Sukhani, D. (1967). J. Inorg. Nucl. Chem. 29, 83-86.
Pfeiffer, J., Noltemeyer, M. \& Meller, A. (1989). Z. Anorg. Allg. Chem. 572, 145-150.
Sheldrick, G. M. (1994). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Release 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Veith, M., Detemple, A. \& Huch, V. (1990). Chem. Ber. 124, 11351141.

Ziegler, M. \& Weiss, J. (1971). Z. Naturforsch. Teil B, 26, 735.

Acta Cryst. (1996). C52, 2491-2493

$\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathbf{C d N b}_{\mathbf{2}}(\mathbf{p y})_{\mathbf{4}} \mathrm{O}_{\mathbf{2}} \mathbf{F}_{\mathbf{1 0}}\right]^{\mathbf{2 -}}$

Paramasivan Halasyamani, Michael J. Willis,
Kevin R. Heier, Charlotte L. Stern and
Kenneth R. Poeppelmeier*
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA. E-mail: krp@nwu.edu
(Received 5 December 1995; accepted 6 June 1996)

Abstract

A new $\mathrm{Cd}^{\mathrm{II}} / \mathrm{Nb}^{\mathrm{V}}$ compound, bis(pyridinium) decafluoro$2 \kappa^{5} F, 3 \kappa^{5} F$-di- μ-oxo-1:2 $\kappa^{2} O ; 1: 3 \kappa^{2} O$-tetrakis(pyridine- N)cadmiumdiniobium $(2-)$, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)_{2}\left[\mathrm{CdNb}_{2} \mathrm{~F}_{10} \mathrm{O}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}-\right.\right.$ $\mathrm{N})_{4}$], has been synthesized. The complex contains $\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{~F}_{10} \mathrm{O}_{2}\right]^{2-}$ anions (py is pyridine) linked via the pyridinium cation through $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{F}$ hydrogen bonding. The anion is composed of two $\left[\mathrm{NbF}_{5} \mathrm{O}_{1 / 2}\right]^{-}$ octahedra connected by O^{2-} to a central $\left[\mathrm{Cd}(\mathrm{py})_{4} \mathrm{O}_{2 / 2}\right]$ octahedron.

Comment

The new mixed metal compound, $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4}-\right.$ $\left.\mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$, (I), is isostructural with $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CuNb}_{2}(\mathrm{py})_{4}-\right.$ $\left.\mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$ (Halasyamani et al., 1996). The title metal complex contains anionic $\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$ clusters linked via the pyridinium cation through hydrogen bonding. Each cluster is composed of two $\left[\mathrm{NbF}_{5} \mathrm{O}_{1 / 2}\right]^{-}$octahedra connected through O^{2-} to a central $\left[\mathrm{Cd}(\mathrm{py})_{4} \mathrm{O}_{2 / 2}\right]$
octahedron. The niobium cations are displaced from the center of the $\left[\mathrm{NbF}_{5} \mathrm{O}_{1 / 2}\right]^{-}$octahedra towards the bridging O atoms (Goodenough \& Longo, 1970) in an antiparallel manner.

Single crystal diffraction data revealed only three unique atoms in the asymmetric unit for pyridinium, indicating disorder. Owing to a number of possible disorder constraints, the probable $\mathrm{N}(3)-\mathrm{H}^{+} \ldots \mathrm{F}$ hydro-gen-bonding interactions were used to disorder $\mathrm{N}(3)$ and $\mathrm{C}(9)$. Only one hydrogen-bonding interaction, however, occurs for each ring. The large U_{33} value observed for the $F(3)$ atom is due to the possible hydrogen-bonding interactions.

Fig. 1. ORTEPII (Johnson, 1976) plot (50% probability ellipsoids) of the polynuclear anion $\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$.

The bond lengths of (I) compare well with other compounds. For example, the $\mathrm{Nb}-\mathrm{O} / \mathrm{F}$ distances, $\mathrm{Nb}-\mathrm{F}_{\text {trans }} 2.097(6), \mathrm{Nb}-\mathrm{O} 1.747(7)$ and $\mathrm{Nb}-\mathrm{F}_{\mathrm{eq}}$ 1.935 (4) \AA, compare well to the $\mathrm{Nb}-\mathrm{O} / \mathrm{F}$ distances of $\mathrm{Nb}-\mathrm{F}_{\text {trans }} 2.095(2), \mathrm{Nb}-\mathrm{O} 1.765(2)$ and $\mathrm{Nb}-\mathrm{F}_{\mathrm{eq}}$ 1.925 (2)-1.974 (2) \AA in $\mathrm{Na}_{2}\left[\mathrm{NbF}_{5} \mathrm{O}\right]$ (Stomberg, 1983). In addition, the average $\mathrm{Cd}-\mathrm{N}$ distance of $2.35(1) \AA$ is in good agreement with the $\mathrm{Cd}-\mathrm{N}$ distance of 2.341 (5) \AA in $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{I} . \mathrm{I}_{2}\right)_{2}\right]$ (Tebbe \& Plewa, 1982).

